On a special class of abelian functions
نویسندگان
چکیده
منابع مشابه
A special Class of Stochastic PERT Networks
Considering the network structure is one of the new approaches in studying stochastic PERT networks (SPN). In this paper, planar networks are studied as a special class of networks. Two structural reducible mechanisms titled arc contraction and deletion are developed to convert any planar network to a series-parallel network structure.
In series-parallel SPN, the completion time distribution...
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملA special Class of Stochastic PERT Networks
Considering the network structure is one of the new approaches in studying stochastic PERT networks (SPN). In this paper, planar networks are studied as a special class of networks. Two structural reducible mechanisms titled arc contraction and deletion are developed to convert any planar network to a series-parallel network structure. In series-parallel SPN, the completion time distribution f...
متن کاملon a special class of finsler metrics
in this paper, we study projective randers change and c-conformal change of p-reduciblemetrics. then we show that every p-reducible generalized landsberg metric of dimension n 2 must be alandsberg metric. this implies that on randers manifolds the notions of generalized landsberg metric andberwald metric are equivalent.
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1945
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1945-08293-7